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The problems of existence and of the upper bound of the velocity of propagation of sim- 
ple steady waves for the nonlinear wave equation which arises particularly in the analysis 

of signal transmission in an active RCL line are investigated. It is shown that simple 

steady waves do exist under certain conditions which the parameters of the nonlinear 

medium (the line parameters) must satisfy and that the velocity of propagation of these 

waves does not exceed a certain value which is strictly smaller than the limiting wave 

propagation velocity in the medium. 

The investigation of simple steady waves in nonlinear media associated either with 

the asymptotic transition of the system from one equilibrium state to another or with 
return to the initial state is of great practical importance. We need merely point to 

such physical phenomena as the propagation of a normal combustion front n], excitation 

in a neuristor line p], and a whole series of processes in distributed semiconductor sys- 

tems such as the Gunn effect [3]. 

Let us consider the nonlinear wave equation 

F8F 
’ "c-g]+[,-;z]$=Q(c) (Dtconat) (0 

where d is the limiting wave propagation velocity and Q(e) is the nonlinear “source”. 

As 8 4 00 Eq. (1) degenerates into the nonlinear diffusion equation 

& - D !? + Q (c) 
2f-- Lw 

As noted above, wave equation (1) can be arrived at by analyzing signal transmission 
in an active RCL transmission line described by a system of nonlinear telegraphic equa- 
tions for the form 

-s=Rj+L_!$, -$= C%$ J&J) (3) 

where R, C and L are, respectively, the resistance, capacitance, and inductance per 

unit length and J(q) is the nonlinear leakage current. System (3) defines the distribution 
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of the potential r&z, f) and of the current density f(z, t) along the line. Eliminating 
I(t, 1) from system (3). we obtain an’equation analogous to (1) for the potential cp(s,r) ; 
here ss = (,X)-l, D = (RG)-1. 

Among the solutions of Eq. (1) we have a certain interesting class which corresponds 
to simple steady waves such that c&t) = c(z + ut) = c(?). The quantity u is the wave 
propagation velocity. Equation (1) here becomes an ordinary first-order differential equa- 

tion. Introducing the phase density PC, we obtain a first-order equation for the function 

P = P(C) ’ dp=Uli - D~-'Q(c)l P- Q(c) dc 
dc D (I - ~4-3 p ( 1 

PGdT (4) 

The authors of [4] carried out a comprehensive investigation of simple steady waves 

for a nonlinear diffusion equation (s -, co) in the case of a function Q(c) if fixed sign 
which vanishes for c z 0 and c = i and has its largest derivative at zero. 

We shall deal with the case of an alternating (in sign) function Q(c) which vanishes 
at three points (C = 0, CO, 1) and a wave equation (s # -). 

The boundary conditions are of the form 

lim c (q) = 0, 
l-W 

lim c (q\ = 1. 
n-e9 

lim 2 s 
~-TIP dq 

lim p(c) = 0 (5) 
c-w; 1 

We define a direct steady wave as a wave associated with passage from the point 
c = 0 to the point c = i for which p s dcldq > 0 for all c + 0.i. Similarly, a reverse 
steady wave is associated with passage from the point c = 1 to the point c =0 for 
which p E dcfdq < 0 for all c # 0.1. Equation (4) has three singular points, two of 
which (namely (0. 0) and (1, 0)) are singular points of the “saddle” type, while the third 
(namely (co, 0) ) is a singular point of the “node” or “focus” type, depending on the sign 

of the inequality 
(6) 

A simple steady wave on the phase plane corresponds to an integral curve which 

extends from saddle to saddle and lies in the upper or lower half-plane for a direct or 
reverse wave, respectively. We note that the required trajectory is a noncoarse phase 

trajectory. 
We make the following assumptions. 

1”. The function Q(c) is single-valued and continuously differentiable with a 
bounded derivative, Q(C) < 0, 0 < c < COY O(c) > 0, co < c < i 

Fig. 1 

Q(0) = Q(co) = Q(l) = 0, g’(O) = - a, 

Q’(1) = -Y iV 

2*. The paraineters of the nonlinear 

medium are such that the inequality 

Ds-“~~~,Q (c) < i 
-_N 

z(i)>0 (UC,=\ Q(W) (8) 

holds. 0 

To prove the existence of a simple steady 
wave we need merely prove the existence 
of a common separatrix of the two saddle 
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points. 
Theorem 1. let the function Q(c) satisfy Conditions lo and 2’. Then there exists 

a unique value of the parameter u = U+ for which the positive solution of Eq. (4) con- 

nects the saddle-type singular points. 
Proof. We denote the separatrices of the saddles (0, 0) and (1. 0) lying in the upper 

half-plane by pa(c) and PI(C) for an arbitrary value of the parameter u and by pi (c) 
and p&) for u = uI (Fig. 1). The angular coefficients of the separatrices are easy to 

determine by solving the characteristic equation for Eq. (4) linearized in the neighbor- 
hoods of the singular points. 

These coefficients for the points (0. 0) and (1. 0) turn out to be 

ha (u) = (2Do)-’ [u (i + Ds%) + vu2 (i - Ds-h)l + 4Dx J 

k (u) = (w)o)-’ [u (i + Ds+g - Vu% (i - Lx?)’ + 4071 
(9) 

respectively, where 0 = i - us@. 

It is clear that A,,(u) and h(u) are increasing functions of the parameter u. 
Now let us consider the “degenerate” equation (u = 0) 

dp i Q(c) P-&=-D (10) 

Integrating (10). we obtain the following equations for the separatrices of the degene- 
rate equations c 1 

P& (e)=-% Q(t)dr, 
s 

j&(c)=+ Q(z)& 
s 

w 
0 0 

The curves p&c) and PIO(C) intersect the straight line c = co at points determined by 
the function Q(C). 

Integrating Eq. (4), we obtain the relations which the separatrices must satisfy for 
arbitrary values of the parameter u , 

po’ (c) = A_ 
DO IS u [i - Ds-‘Q’ (z)] pa(z)dt- 

5 1 
QW dir 

n cl 

Pl’ (c) = & {-UC [i - Ds-‘Q’(z)] PI (z)d++ f Q(z)dz) 

E c 
(13) 

The right side of Eq. (4) is an increasing function of the parameter u for all 0 < c Q 
< i and p > 0 ; hence, making use of Chaplygin’s theorem on differential inequalities 

and of the properties of the angular coefficients of the separatrices &, (u) and Lr(u), we 
can show (as is done in [S]) that for u1 > ua > 0 the following inequalities are valid: 

Pod4 > Pn44 > POOW, 0 < c G co 
Plk) < PIYW < PlO 6% co f c < 1 

(14) 

(15) 

The disposition of these separatrices is shown in Fig. 1. In addition, we can make use 
of the second condition of (8) and formulas (11) to prove the validity of the inequality 
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poo(c0) < PI0 (4 (1’3) 

It is now easy to prove that the right side of Eq. (4) satisfies the conditions of the theo- 

rem on the continuous dependence of the solution on the parameter u. Making use of 

this theorem and taking into account the properties (14) and (1.5). we conclude that 

po(co) and Pi are continuous monotonically increasing and monotonically decreasing 
(respectively) functions of the parameter U. Moreover, ps(co) increases without limit as 

u + J, since (12) gives us r^ 

po’ (co) > - &a s Q (4 d= 
0 

where the o defined in (9) tends to zero as u -, s. It is now clear that there exists a 

unique parameter value u = U* < S. such that PO*(C) = pl*(co). The theorem has been 

proved. 

Note 1. A similar theorem can be proved for a reverse steady wave by replacing 

the second inequality of Condition 2” by its opposite, namely by Z(1) < 0. 

Note 2. There is no reverse wave if Z(1) > 0. This can be demonstrated by reduc- 
tio ad absurdum: the opposite statement and me properties of Q(C) imply the existence 
of a point CO <c* < 1 such that Z(c*) = 0 ; this result and relation (12) for c = C* im- 

ply the contradiction of the premise. Thus, u = U* is the velocity of propagation of 

simple steady waves. It turns out, moreover, that u’is smaller than a quantity which is 

strictly smaller than the limiting propagation velocity s. The following theorem gives 

us an upper estimate for the velocity of propagation of simple steady waves. 

Theorem 2. let the function Q(c) satisfy Conditions 1” and the first inequality 

of (8). The following estimates for the velocity of propagation of a simple steady wave 
then hold : 

Fig. 2 

u’< Uf<J, Uf:E 2d3 

1 + Da-*Qf 
(17) 

where the plus and minus superscripts refer 

to the direct and reverse waves, respectively, 

and Q+= m&Q’ (c), Q- = mm Q' (4 
O<C<C. 

(18) 
Proof. The following proof is based on a 

simple generalization of the device employed 

in [4]. 
let us suppose that the theorem is untrue 

(i.e. that values u > U+ are permissible) 
and prove that simple steady waves do not 
exist. let us consider the isoclines of Eq. (4), 

u II - DfV’ (41 P - Q(c) 
DOP 

The equation of the family of isoclines 
has the form 
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For 0 Q k < k, = UA /(Do), where A = 1 - Ds-IQ+, the curves p&) are conti- 

nuous and vanish (Fig. ‘2) at the points c = 0, CO, 1 (p"(c) corresponds to the value 

k = 0). For k = k* the isocline p,(c) has a discontinuity at the maximum of Q’(c) (we 

assume that Q’ > Q- ; the latter fact is immaterial, however, since we are considering 

the behavior of the curves n&f for cg < c 0 1 only). 
It is easy to show that for ca < e < i and any k, < ka < k* we have p&c)< p&h 

where the subscripts correspond to the values krand kz. 

Let us chose the isocline corres~nding to the value 

kp = (XI@-* [uA + J&ha - w)o] < k’ (20) 

Here A = 1 - DPQf, and w = i -. n%+. It is clear that the parameter ke is real 

by virtue of our assumption. The equation of the isocline is 

PO @) = 29 W 
UA + 2Dus’2 [Q’ - Q’ (c)] - du”Ah” - 4DwQ+ 

(21) 

By virtue of the foregoing considerations, all of the isoclines corresponding to 
0 <k < ke lie between the zeroth isocline and isocline (21). Let us construct the straight 

line P(c) = k& - co). The latter has only one point of intersection with the isocline 

PO(C) in the range CO < c < i t namely the point (CO, 0). If this was not so, the equation 

PW = P(c) would have a root for c # CO . But this is impossible since the equation 

under consideration is equivalent to the equation 

Q(c:c) = (c - co) IQ” + ~zk~~s-a{~* - Q’(c))1 

which has only one root c = co with Q+ chosen as above, 

Thus, the angular coefficients of the integral curve are larger than k. for all points of 
the phase plane lying in the half-strip CO < c < i above and on the straight line P(e) = 

= k&c - CO) + (This is the shaded area in Fig. 2). 

Hence, an integral curve p(c) which intersects the straighr line E = ca above the axis 
does not intersect the straight line P(c) ; this excludes the possibiliity of an integral curve 
p(c) passing &rough the point (1, 0). Finally, we %onclude that an integral curve lying 

in the upper half-plane and connecting the points (0, 0) and (1, 0) does not exist, Hence, 
inequalities (15) for the velocity of propagation of a simple steady wave are valid, 

The theorem has been proved. The proof for the reverse wave can be carried out in 
precisely similar fashion. 

Note 1. The first condition of (8) isolates the domain of values of the basic para- 
meters of the nonlinear media corresponding to the propagation of “slow” waves (waves 
of velocity smaller than the limiting velocity). For an active RCL transmission line 
this condition becomes 

Thus, if the line parameters R, C and L are such that the above condition is satisfied, 

then the existence of simple steady waves propagating at velocities strictly smaller than 
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the limiting velocity s = i / @? is guaranteed. The possibility of regulating the 
velocity of signal transmission in an active line is of great practical interest. 

If the opposite inequality holds in the first condition of (8), then (as was verified by 

numerical calculations) continuous simple steady tvaves can propagate at velocities 

close to the limiting velocity s in the case of a piecewise-linear approximation of the 
function Q(C) ; the steepness of the front of such a wave increases without limit, and dis- 

continuous waves can propagate in the medium for u = s . Moreover, the indicated con- 

dition has an important bearing on the uniqueness of the solution of problem (4). (5). 

Note 2. The quantities I& coincide with each other and with the estimate given 
in [S] if the maximum value of the derivative Q’(C) is realized at the point c = CO and 

if the function is strictly convex and strictly concave in the ranges 0 < c < co and 

co < c < i , respectively. 

Note 3. The first condition of (8) is not essential in the “diffusion” approximation 

(s--roe) , and all the results are valid under weaker restrictions on Q(c). Moreover, the 

inequalities can be refined by replacing Q* by the minimum values of the angular coef- 

ficients of the curves kf (c - co), which do not intersect Q(e) for cu .< c < 1 and 
0 < c < co , respectively, except at the point (c = CO, p = 0). 
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